Alkaloids from the Roots of Aconitum pseudo-laeve var. erectum ${ }^{\perp}$

Sang Hee Shim, ${ }^{\dagger}$ Ju Sun Kim, ${ }^{\dagger}$ Kun Ho Son, ${ }^{\S}$ Ki Hwan Bae, ${ }^{\ddagger}$ and Sam Sik Kang*, ${ }^{\dagger}$
Natural Products Research Institute and College of Pharmacy, Seoul National University, Seoul 110-460, Korea, Department of Food and Nutrition, Andong National University, Andong 760-749, Korea, and College of Pharmacy, Chungnam National University, Taejon 305-764, Korea

Received June 13, 2005

Abstract

One new quinazoline (1) and two new norditerpenoid ($\mathbf{2}$ and $\mathbf{3}$) alkaloids along with 10 known compounds were isolated from the roots of Aconitum pseudo-laeve var. erectum. The new alkaloids were assigned as 2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoic acid methyl ester (1), 18-O-2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoyllycoctonine (2), and 14- O-acetyl-8-O-methyl-18-O-2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoylcammaconine (3). The structures of the new alkaloids were established by spectroscopic methods. This is the first report of the 2-(2-methyl-4-oxo- 4 H -quinazoline-3-yl)benzoyl ester group being found as an acyl substituent in norditerpenoid alkaloids (compounds 2 and 3).

Aconitum pseudo-laeve var. erectum Nakai (Ranunculaceae) is a species found in the alpine regions of Korea, Japan, and mainland China. The roots of A. pseudo-laeve var. erectum are used as an analgesic and antispasmodic agent in traditional Korean folk medicine, and a decoction of the roots is used to treat neuralgic and rheumatic conditions. ${ }^{1}$ In addition, the root has been used to treat the common cold. ${ }^{2}$ Aconitum species containing highly toxic diterpene and norditerpene alkaloids have attracted considerable attention on account of their complex structures, interesting chemistry, and noteworthy physiological effects. ${ }^{3}$ Previous studies on this plant have led to the isolation of norditerpene alkaloids, lycoctonine, septentriodine, ${ }^{4}$ avadhardine, ${ }^{5}$ and anthranilic acid amides ${ }^{5-7}$ together with sterols, ${ }^{8}$ glycerol 1-hexadecanoate, ${ }^{6}$ and the flavonoid astragalin. ${ }^{8}$ The acute toxicity of the $\mathrm{H}_{2} \mathrm{O}$ and MeOH extracts of the roots of A. pseudo-laeve var. erectum, which are expressed as LD_{50} values in mice, was reported to be 1.23 and $0.77 \mathrm{~g} / \mathrm{kg}$, respectively. ${ }^{5}$ Lycaconitine was isolated from this plant and found to be effective in multidrug-resistant cancers. ${ }^{9}$

As part of an ongoing phytochemical investigation of Aconitum plants in Korea, ${ }^{10,11}$ the present study examined the roots of A. pseudo-laeve var. erectum and resulted in the isolation of one new quinazoline alkaloid, 2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoic acid methyl ester (1), along with two new norditerpene alkaloids, 18-O-2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoyllycoctonine (2) and 14-O-acetyl-8-O-methyl-18-O-2-(2-methyl-4-oxo- 4 H -quinazoline-3-yl)benzoylcammaconine (3), as well as 10 known compounds. The known compounds were identified as β-sitosterol, ${ }^{8}$ stigmasta-4-en-3-one, ${ }^{8}$ stigmasta-4-en-3,6-dione, ${ }^{8} \beta$ sitosterol glucoside, ${ }^{8}$ methyl N -(2-acetaminobenzoyl)anthranilate, ${ }^{6}$ methyl N -acetylanthranilate, ${ }^{7}$ lycoctonine, ${ }^{4}$ inuline, ${ }^{12}$ acobretine $\mathrm{E},{ }^{13}$ and methyl N-(3-carbamoylpropionyl)anthranilate. ${ }^{5}$ This paper reports the isolation and structural elucidation of compounds $\mathbf{1 - 3}$.

Compound 1 was obtained as an amorphous powder. The HREIMS showed a molecular ion peak [M] ${ }^{+}$at $m / z 294.1003$ (calcd 294.1004), which corresponds to the molecular formula $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$. The IR spectrum of $\mathbf{1}$ showed absorption bands at 1718 (ester), $1689(\mathrm{C}=\mathrm{O}), 1595,1570,1469$ (aromatic), $1282(\mathrm{C}-\mathrm{O})$, and 1089 $(\mathrm{C}-\mathrm{O}-\mathrm{C}) \mathrm{cm}^{-1}$. The UV absorbances at 227, 231, 266, 273, 306, and 316 nm indicated the presence of a quinazolinone derivative. ${ }^{14,15}$

[^0]

$3 \mathrm{R}=\mathrm{MOQB}$

The ${ }^{1} \mathrm{H}$ NMR spectrum exhibited signals at $\delta_{\mathrm{H}} 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right)$, and eight aromatic protons $\left(\delta_{\mathrm{H}} 7.49-\right.$ 8.22). The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum revealed two sets of $1,2-$ disubstituted benzene ring systems, indicating that $\mathbf{1}$ is a 2-methyl-3-aryl-4(3H)-quinazolinone derivative. ${ }^{14-16}$ The ${ }^{13} \mathrm{C}$ NMR spectrum of compound 1 showed 17 signals, including one methoxy, one methyl, eight methines, and seven quaternary carbons. The ${ }^{1} \mathrm{H}-$ ${ }^{13} \mathrm{C}$ correlations were obtained from the HMQC spectrum, while the long-range correlations were determined using the HMBC spectrum. Figure 1 shows the HMBC correlations of $\mathrm{H}-3$ with 7-

Figure 1. HMBC correlations of compound 1.
$\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-1, \mathrm{H}-6$ with $\mathrm{C}-4$ and $\mathrm{C}-2, \mathrm{CH}_{3}-2^{\prime}$ with $\mathrm{C}-2^{\prime}$, and $\mathrm{H}-5^{\prime}$ with $\mathrm{C}-4^{\prime}$, which were used to position the vinyl methyl and carbomethoxyphenyl groups in the $4(3 \mathrm{H})$-quinazolinone moiety. On the basis of the above spectroscopic data, the structure of compound 1 was determined as 2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoic acid methyl ester. Although compound $\mathbf{1}$ was previously reported to be a byproduct of imidate synthesis, this is the first report of it being isolated as a natural product. ${ }^{16}$

Compound 2 was isolated as an amorphous powder. The HREIMS showed a molecular ion peak $[\mathrm{M}]^{+}$at $\mathrm{m} / \mathrm{z} 729.3463$ corresponding to the molecular formula $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9}$. The spectroscopic data of compound 2 were similar to those of inuline. ${ }^{12} \mathrm{~A}$ comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of compound 2 with those of inuline clearly showed the new alkaloid to be a lycoctonine derivative possessing a 2 -(2-methyl-4-oxo- 4 H -quinazoline-3-yl)benzoyl (MOQB) ester group [$\delta_{\mathrm{H}} 8.22$ (dd, $\left.J=1.5,7.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, 7.71 (td, $\left.J=0.6,7.5 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right), 7.82\left(\mathrm{td}, J=1.5,8.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, 7.45 (dd, $\left.J=1.2,8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 8.16$ (ddd, $J=0.6,1.5,8.0 \mathrm{~Hz}$, $\mathrm{H}-5^{\prime \prime}$), 7.55 (ddd, $J=1.2,7.2,8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}$), 7.88 (ddd, $J=1.8$, $\left.7.2,9.0 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.71\left(\mathrm{td}, J=1.2,7.5 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 2.23\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ $\left.2^{\prime \prime}\right) ; \delta_{\mathrm{C}} 138.4$ (C-1'), 129.8 (C-2'), 133.4 (C-3'), 131.2 (C-4'), 135.6 (C-5'), 131.4 (C-6'), 166.4 (C-7'), 156.5 (C-2"), 163.7 (C-4"), 127.8 (C-5"), 128.2 (C-6"), 136.3 (C-7"), 127.8 (C-8"), 148.7 (C-9"), $122.0\left(\mathrm{C}-10^{\prime \prime}\right), 24.2\left(\mathrm{CH}_{3}-2^{\prime \prime}\right)$] at $\mathrm{C}-18$, instead of an anthranoyl group. A HMBC experiment showed that the proton signals at δ_{H} 3.99 and $4.10(1 \mathrm{H}$ each, $\mathrm{d}, J=11.4 \mathrm{~Hz})$, which were assigned to the nonequivalent $\mathrm{C}-18$ methylene protons, correlated with threebond connectivities with a carbonyl carbon signal at δ_{C} 166.4. Therefore, the structure of compound $\mathbf{2}$ was determined to be 18-O-2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoyllycoctonine.

Compound 3 was assigned a molecular formula of $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}$, which was established by HREIMS ($\mathrm{m} / \mathrm{z} 725.3608[\mathrm{M}]^{+}$; calcd for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}, 725.3674$), as well as from ${ }^{13} \mathrm{C}$ NMR spectroscopic data and DEPT experiments. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3 displayed resonance signals characteristic of a MOQB norditerpenoid alkaloid, including methyl protons of the alkaloid N-ethyl group ($\delta_{\mathrm{H}} 1.01$), the methyl group of the MOQB ester group (δ_{H} 2.22), three methoxyl groups ($\delta_{\mathrm{H}} 3.04,3.20,3.30$), an acetoxyl group ($\delta_{\mathrm{H}} 1.98$), downfield resonances for the methine proton at $\mathrm{C}-14$ ($\delta_{\mathrm{H}} 4.71$), C-18 methylene protons ($\delta_{\mathrm{H}} 3.78,3.96$), and lowfield aromatic protons for the MOQB ester group $\left[\delta_{\mathrm{H}} 8.20(\mathrm{~m}\right.$, $\left.\mathrm{H}-3^{\prime}, 5^{\prime \prime}\right), 7.70\left(\mathrm{td}, J=1.2,7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.81$ (td, $J=1.5,7.8$ Hz, H-5'), 7.43 (dd, $J=0.9,7.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 7.58 ($\mathrm{m}, \mathrm{H}-6^{\prime \prime}$), 7.90 $\left(\mathrm{tt}, J=1.5,8.4 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 7.75\left(\mathrm{~m}, \mathrm{H}-8^{\prime \prime}\right), 2.22\left(\mathrm{~s}, \mathrm{CH}_{3}-2^{\prime \prime}\right) ; \delta_{\mathrm{C}}$ 138.3 ($\mathrm{C}-1^{\prime}$), 130.1 ($\left.\mathrm{C}-2^{\prime}\right), 133.4$ (C-3'), 131.2 ($\mathrm{C}-4^{\prime}$), 135.4 (C5^{\prime}), 131.3 (C-6'), 166.5 (C-7'), 156.4 (C-2"), 163.8 (C-4"), 127.9 (C-5"), 128.3 (C-6"), 136.4 (C-7"), 127.9 (C-8"), 148.7 (C-9"), $\left.122.0\left(\mathrm{C}-10^{\prime \prime}\right), 24.0\left(\mathrm{CH}_{3}-2^{\prime \prime}\right)\right]$. The ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of compound $\mathbf{3}$ revealed an oxygenated methine proton vicinal to the methylene protons in a $-\mathrm{CH}(\mathrm{O})-\mathrm{CH}_{2}-\mathrm{CH}_{2}-$ fragment, confirming the presence of a methoxy group at $\mathrm{C}-1$. The HMBC experiment showed that the signal at $\delta_{\mathrm{H}} 4.71(\mathrm{t}, J=4.8 \mathrm{~Hz})$, which was assigned to the $\mathrm{C}-14$ methine proton, had three-bond connectivities with an acetoxyl $\mathrm{C}=\mathrm{O}\left(\delta_{\mathrm{C}} 173.2\right)$, a quaternary carbon ($\delta_{\mathrm{C}} 79.0$), and an oxygenated methine carbon ($\delta_{\mathrm{C}} 84.7$) signal, which were
assigned to the C-14 OAc and the C-8 and C-16 methoxyls, respectively. The MOQB ester at $\mathrm{C}-18$ in compound $\mathbf{3}$ was established by a three-bond correlation in the HMBC spectrum. The configurations at $\mathrm{C}-1, \mathrm{C}-14$, and $\mathrm{C}-16$ were established from the similarity of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data of $\mathbf{3}$ to those reported for 8 -ethoxysachaconitine ${ }^{17}$ and 14-O-acetyl-8-O-methyltalatizamine. ${ }^{18}$ Therefore, the structure of compound $\mathbf{3}$ was determined to be 14-O-acetyl-8-O-methyl-18-O-2-(2-methyl-4-oxo-4H-quinazo-line-3-yl)benzoylcammaconine. Compounds 2 and $\mathbf{3}$ are the first examples of the MOQB ester group being found as a substituent in norditerpenoid alkaloids.

Experimental Section

General Experimental Procedures. Optical rotations were determined using a JASCO P-1020 polarimeter. IR and UV spectra were recorded on a JASCO FT/IR-5300 and a Hitachi U-3210 spectrometer, respectively. NMR spectra were obtained using either a Varian Gemini 2000 instrument (300 MHz) or a Bruker AM-500 $(500 \mathrm{MHz}$), and the chemical shifts were referenced to TMS. EIMS were measured using a Hewlett-Packard 5989B spectrometer. FABMS were run in a 3-nitrobenzyl alcohol matrix in the positive-ion mode using a JEOL 700 mass spectrometer. TLC was performed on silica gel $60 \mathrm{~F}_{254}$ (Merck).

Plant Material. The whole plant of A. pseudo-laeve var. erectum was collected on Mt. Gyerhyong, Korea, in August 2002, and was identified by one of the authors (K.-H.B.), from Chungnam National University, where a voucher specimen (CNU 624) has been deposited.

Extraction and Isolation. The powdered roots of A. pseudo-laeve var. erectum (1.5 kg) were extracted with MeOH seven times at room temperature. The MeOH extracts were combined and evaporated to dryness under reduced pressure. This extract was partitioned with 3\% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ and CHCl_{3}. The CHCl_{3} extract (45 g) was separated by chromatography on a silica gel column into seven fractions (I-VII) with a gradient of MeOH in CHCl_{3}. The precipitate (200 mg) obtained by decantation from fraction I was chromatographed over silica gel (cyclohexane-EtOAc, 40:1) to give β-sitosterol (20 mg) and stigmasta-4-en-3-one (20 mg). The rest of fraction I $(9.3 \mathrm{~g})$ was purified over a silica gel column, with hexane-EtOAc (10:1) as the solvent system, yielding stigmasta-4-en-3,6-dione (25 mg), β-sitosterol glucoside (15 mg), and methyl N-(2 -acetaminobenzoyl)anthranilate (30 mg). Fraction III was chromatographed on silica gel using cyclohexane-EtOAc-diethylamine (10:1:0.2) for elution, which afforded five fractions (III-1-III-5). Fraction III-1 (0.19 g) was further purified by a silica gel column, with cyclohexane-EtOAc-diethylamine (20:1:0.2), to give methyl N-acetylanthranilate (15 mg). Fraction III-3 $(0.2 \mathrm{~g})$ was further chromatographed over a silica gel column (cyclo-hexane-EtOAc-diethylamine, 10:1.5:1) and yielded 10 mg of compound 2. Fraction III-5 (0.4 g) was subjected to repeated column chromatography over silica gel with cyclohexane-EtOAc-diethylamine (5:1:0.2) and purified on silica gel with cyclohexane-EtOAc (40:1) to yield lycoctonine (80 mg). Fraction IV (1.5 g) was subjected to silica gel column chromatography using cyclohexane-EtOAcdiethylamine (10:1.1:0.2) for elution, giving fractions IV-1-IV-10. Fractions IV-1 and IV-3 were chromatographed on a silica gel column using benzene-EtOAc-diethylamine ($30: 1: 0.2$) as solvents, giving compound $\mathbf{3}(15 \mathrm{mg})$ and acobretine $\mathrm{E}(18 \mathrm{mg})$, respectively. Fraction $\mathrm{V}(1.2 \mathrm{~g})$ was further purified by silica gel column chromatography with cyclohexane-EtOAc-diethylamine (30:1:0.2) to afford 10 mg of compound 1. Fraction VI (1.2 g) was purified over a silica gel column, with benzene-EtOAc-diethylamine (30:1:0.2) as the solvent system, resulting in nine subfractions (VI-1-VI-9). Inuline (25 mg) and methyl N-(3-carbamoylpropionyl)anthranilate (25 mg) were isolated from fractions VI-2 and VI-7 by recrystallization from MeOH , respectively.

2-(2-Methyl-4-oxo-4H-quinazoline-3-yl)benzoic acid methyl ester [3-(2-carbomethoxyphenyl)-2-methyl-4(3H)-quinazolinone] (1): amorphous powder (MeOH); IR (KBr) $\nu_{\max } 3429,1718$ (ester), 1689 (CO), 1595, 1570, 1469 (aromatic C=C), 1379, 1346, 1282, 1089, $777 \mathrm{~cm}^{-1}$; $\mathrm{UV}(\mathrm{EtOH}) \lambda_{\text {max }}(\log \epsilon) 227$ (4.23), 231 (4.24), 266 (3.87), 273 (3.85), 306 (3.50), 316 (3.42) nm; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 2.19(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3}-2^{\prime}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COOCH}_{3}\right), 7.49(1 \mathrm{H}, \mathrm{dd}, J=1.2,7.8 \mathrm{~Hz}, \mathrm{H}-6)$, $7.53\left(1 \mathrm{H}, \mathrm{ddd}, J=0.9,7.3,8.4 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.70(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J=7.5 \mathrm{~Hz}$, $\left.\mathrm{H}-8^{\prime}\right), 7.70(1 \mathrm{H}, \mathrm{ddd}, J=1.2,7.8,7.8 \mathrm{~Hz}, \mathrm{H}-4), 7.83(1 \mathrm{H}, \mathrm{ddd}, J=$

Table 1. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts for Compounds 2 and 3 (norditerpenoid moiety) in $\mathrm{CD}_{3} \mathrm{OD}$

carbon	$\mathbf{2}$	$\mathbf{3}$	carbon	$\mathbf{2}$	$\mathbf{3}$
1	84.9	86.0	15	34.8	36.5
2	27.0	27.3	16	84.3	84.7
3	32.7	33.1	17	65.8	62.3
4	38.2	38.7	18	71.4	71.6
5	51.6	46.5	19	53.2	53.4
6	91.8	24.9	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	52.0	49.9
7	89.6	41.0	$\mathrm{CH}_{2} \mathrm{CH}_{3}$	14.3	13.7
8	78.6	79.0	OCOCH_{3}		173.2
9	44.5	44.2			21.3
10	46.7	45.7	$\mathrm{OCH}_{3}-1$	56.1	56.5
11	50.0	50.0	$\mathrm{OCH}_{3}-6$	56.3	
12	29.6	29.8	$\mathrm{OCH}_{3}-8$		48.1
13	39.0	39.7	$\mathrm{OCH}_{3}-14$	57.9	
14	85.2	77.1	$\mathrm{OCH}_{3}-16$	58.8	56.4

Table 2. ${ }^{13} \mathrm{C}$ NMR Chemical Shifts for Compounds $\mathbf{1 - 3}$ (acyl moiety) in $\mathrm{CD}_{3} \mathrm{OD}$

carbon	$\mathbf{1}$	carbon	$\mathbf{2}$	$\mathbf{3}$
1	139.0	1^{\prime}	138.4	138.3
2	129.2	2^{\prime}	129.8	130.1
3	133.1	3^{\prime}	133.4	133.4
4	131.2	4^{\prime}	131.2	131.2
5	135.5	5^{\prime}	135.6	135.4
6	131.4	6^{\prime}	131.4	131.3
7	166.3	7^{\prime}	166.4	166.5
2^{\prime}	156.6	$2^{\prime \prime}$	156.5	156.4
4^{\prime}	164.1	$4^{\prime \prime}$	163.7	163.8
5^{\prime}	127.7	$5^{\prime \prime}$	127.8	127.9
6^{\prime}	128.0	$6^{\prime \prime}$	128.2	128.3
7^{\prime}	136.2	$7^{\prime \prime}$	136.3	136.4
8^{\prime}	127.4	$8^{\prime \prime}$	127.8	127.9
9^{\prime}	148.7	$9^{\prime \prime}$	148.7	148.7
10^{\prime}	121.6	$10^{\prime \prime}$	122.0	122.0
$\mathrm{CH}_{3}-2^{\prime}$	23.8	$\mathrm{CH}_{3}-2^{\prime \prime}$	24.2	24.0
COOCH_{3}	52.9			

$1.5,7.8,7.8 \mathrm{~Hz}, \mathrm{H}-5), 7.86\left(1 \mathrm{H}, \mathrm{ddd}, J=1.5,7.2,8.4 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right), 8.16$ $\left(1 \mathrm{H}, \mathrm{ddd}, J=0.6,1.5,8.1 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 8.22(1 \mathrm{H}, \mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}$, $\mathrm{H}-3)$; ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$), see Table 2; FABMS m/z 295 $[\mathrm{M}+\mathrm{H}]^{+}$; EIMS m/z $294[\mathrm{M}]^{+}(26), 279\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{+}(5), 261[\mathrm{M}-$ $\left.\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3}\right)\right]^{+}(27), 235\left[\mathrm{M}-\mathrm{CH}_{3} \mathrm{COO}\right]^{+}(100), 144$ (11), 116 (18), 90 (31), 77 (72); HREIMS $m / z 294.1003[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$, 294.1004).

18-O-2-(2-Methyl-4-oxo-4H-quinazoline-3-yl)benzoyllycoctonine (2): amorphous powder (MeOH); $[\alpha]^{21} \mathrm{D}+64.97^{\circ}(c 3.5, \mathrm{MeOH})$; IR (KBr) $\nu_{\text {max }} 3437,1722$ (ester), 1686 (CO), 1607, 1572, 1489, 1471 (aromatic $\mathrm{C}=\mathrm{C}$), 1381, 1292, 1269, 1119, 1088, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 0.97\left(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.41(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{H}-5), 1.52(1 \mathrm{H}, \mathrm{dd}, J=6.6,15.3 \mathrm{~Hz}, \mathrm{H}-15 \mathrm{a}), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2^{\prime \prime}\right)$, $2.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{H}-19), 2.54(1 \mathrm{H}, \mathrm{dd}, J=9.0,15.3 \mathrm{~Hz}, \mathrm{H}-15 \mathrm{~b}), 2.81$ (1H, br s, H-17), 2.91 (1 H , dd, $J=4.8,6.6 \mathrm{~Hz}, \mathrm{H}-9$), $3.14(1 \mathrm{H}, \mathrm{dd}, J$ $=6.6,9.0 \mathrm{~Hz}, \mathrm{H}-16), 3.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-1\right), 3.24\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-6\right)$, $3.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-16\right), 3.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}-14\right), 3.61(1 \mathrm{H}, \mathrm{t}, J=4.5$ $\mathrm{Hz}, \mathrm{H}-14), 3.73$ (1 H , br s, H-6), $3.99,4.10$ (1 H each, $J=11.4 \mathrm{~Hz}$, $\mathrm{H}-18), 7.45\left(1 \mathrm{H}, \mathrm{dd}, J=1.2,8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.55(1 \mathrm{H}, \mathrm{ddd}, J=1.2$, $\left.7.2,8.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 7.71\left(1 \mathrm{H}, \mathrm{td}, J=0.6,7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.71(1 \mathrm{H}, \mathrm{td}$, $\left.J=1.2,7.5 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 7.82\left(1 \mathrm{H}, \mathrm{td}, J=1.5,8.6 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.88(1 \mathrm{H}$, ddd, $\left.J=1.8,7.2,9.0 \mathrm{~Hz}, \mathrm{H}^{\prime \prime} 7^{\prime \prime}\right), 8.16(1 \mathrm{H}, \mathrm{ddd}, J=0.6,1.5,8.0 \mathrm{~Hz}$, $\left.\mathrm{H}-5^{\prime \prime}\right), 8.22\left(1 \mathrm{H}\right.$, dd, $\left.J=1.5,7.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR (75.5 MHz, $\mathrm{CD}_{3} \mathrm{OD}$), see Tables 1 and 2; EIMS m/z $729[\mathrm{M}]^{+}(21)$, $701[\mathrm{M}-$ $\mathrm{CO}]^{+}(32), 700[\mathrm{M}-(\mathrm{CO}+\mathrm{H})]^{+}(76), 684[\mathrm{M}-(\mathrm{CO}+\mathrm{OH})]^{+}$
(100), $668\left[\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{OH}+\mathrm{CO}+\mathrm{H}\right)\right]^{+}(67), 436$ [norditerpene moiety (467) $\left.-\mathrm{CH}_{3} \mathrm{O}\right]^{+}(21), 406\left[436-2 \mathrm{CH}_{3}\right]^{+}(58), 281$ (100), 263 $[M O Q B]^{+}$(100), 235 (100), 146 (57), 71 (89); HREIMS m/z. 729.3463 $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{9}, 729.3625$); HRFABMS m/z. 730.3698 [M $+\mathrm{H}]^{+}$(calcd for $\mathrm{C}_{41} \mathrm{H}_{52} \mathrm{~N}_{3} \mathrm{O}_{9}, 730.3703$).

14-O-Acetyl-8-O-methyl-18-O-2-(2-methyl-4-oxo-4H-quinazoline-3-yl)benzoylcammaconine (3): amorphous powder (MeOH); $[\alpha]^{21}{ }_{\mathrm{D}}$ -10.4° (c 1.3, MeOH); IR (KBr) $v_{\max } 3437,1726$ (ester), 1686 (CO), 1609, 1572, 1491, 1471 (aromatic $\mathrm{C}=\mathrm{C}$), 1379, 1292, 1252, 1115, 1088, $775 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.01(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.98(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}-2^{\prime \prime}\right), 2.71(1 \mathrm{H}$, br s, $\mathrm{H}-17), 2.79(1 \mathrm{H}, \mathrm{dd}, J=6.6,9.9 \mathrm{~Hz}, \mathrm{H}-1), 3.04,3.20,3.30(3 \mathrm{H}$ each, $\left.\mathrm{s}, \mathrm{OCH}_{3}\right), 4.71(1 \mathrm{H}, \mathrm{t}, J=4.8 \mathrm{~Hz}, \mathrm{H}-14), 3.78,3.96(1 \mathrm{H}$ each, $J=$ $11.1 \mathrm{~Hz}, \mathrm{H}-18), 7.43\left(1 \mathrm{H}, \mathrm{dd}, J=0.9,7.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 7.58(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}-6^{\prime \prime}\right), 7.70\left(1 \mathrm{H}, \mathrm{td}, J=1.2,7.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 7.75\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-8^{\prime \prime}\right), 7.81$ $\left(1 \mathrm{H}, \mathrm{td}, J=1.5,7.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right), 7.90\left(1 \mathrm{H}, \mathrm{tt}, J=1.5,8.4 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right)$, 8.20 (2H, m, H-3', $5^{\prime \prime}$); ${ }^{13} \mathrm{C}$ NMR ($75.5 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$), see Tables 1 and 2; FABMS $m / z 726[\mathrm{M}+\mathrm{H}]^{+}$; EIMS $m / z 726[\mathrm{M}+\mathrm{H}]^{+}(16)$, $695\left[\mathrm{M}-\mathrm{OCH}_{3}\right]^{+}(100), 634\left[\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OCH}_{3}\right)\right]^{+}(34)$, $633\left[\mathrm{M}-\left(\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}\right)\right]^{+}(76), 432$ [norditerpene moiety (463) $\left.-\mathrm{CH}_{3} \mathrm{O}\right]^{+}(100), 400\left[432-\mathrm{CH}_{3} \mathrm{OH}\right]^{+}(40), 282$ (97), 263 [MOQB] ${ }^{+}$(100), 236 (93), 121 (49), 71 (75); HREIMS m/z 725.3608 $[\mathrm{M}]^{+}$(calcd for $\mathrm{C}_{42} \mathrm{H}_{51} \mathrm{~N}_{3} \mathrm{O}_{8}, 725.3674$).

Acknowledgment. This study was supported by a grant from the Korea Health 21 R\&D Project, Ministry of Health and Welfare, Republic of Korea (01-PJ2-PG6-01NA01-002). The authors wish to give their sincere gratitude to the staff of the Korea Basic Science Institute for NMR (500 MHz) and HRMS measurements.

References and Notes

(1) Bae, K.-H. Illustrated Book of Health for Longevity; Kyo-Hak Publishing Co., Ltd.: Seoul, 2003; p 367.
(2) Perry, L. M. Medicinal Plants of East and Southeast Asia: Attributed Properties and Uses; The MIT Press: Cambridge, 1980; p 333.
(3) Pelletier, S. W.; Mody, N. V.; Joshi, B. S.; Schramm, L. C. In Alkaloids: Chemical and Biological Perspectives; Pelletier, S. W., Ed.; John Wiley and Sons: New York, 1984; Vol. 2, Chapter 5, pp 205-462.
(4) Chung, B. S.; Lee, H. S. Kor. J. Pharmacogn. 1988, 19, 181-187.
(5) Lee, H. S.; Chung, B. S. Kor. J. Pharmacogn. 1989, 20, 6-9.
(6) Lee, H. S.; Ahn, Y. K.; Han, D. S. Kor. J. Pharmacogn. 1989, 20, 215-218.
(7) Kim, D. K.; Kwak, J. H.; Kwon, H. C.; Song, K. W.; Zee, O. P.; Lee, K. R. Yakhak Hoeji 1996, 40, 418-421.
(8) Kim, D. K.; Kwak, J. H.; Song, K. W.; Kwon, H. C.; Zee, O. P.; Lee, K. R. Kor. J. Pharmacogn. 1996, 27, 75-79.
(9) Kim, D. K.; Kwon, H. Y.; Lee, K. R.; Rhee, D. K.; Zee, O. P. Arch. Pharm. Res. 1998, 21, 344-347.
(10) Shim, S. H.; Kim, J. S.; Kang, S. S.; Son, K. H.; Bae, K.-H. Arch. Pharm. Res. 2003, 26, 709-715.
(11) Shim, S. H.; Kim, J. S.; Kang, S. S. Chem. Pharm. Bull. 2003, 51, 999-1002.
(12) Pelletier, S. W.; Mody, N. V.; Sawhney, R. S.; Bhattacharyya, J. Hetrocycles 1977, 7, 327-339.
(13) Li, Y.-H.; Chen, D.-H. Acta Bot. Sin. 1994, 36, 148-152.
(14) Pakrashi, S. C.; Bhattacharyya, J. Tetrahedron 1968, 24, 1-5.
(15) Hagiwara, Y.; Kurihara, M.; Yoda, N. Tetrahedron 1969, 25, 783792.
(16) Leiby, R. W. J. Org. Chem. 1985, 50, 2926-2929.
(17) Díaz, J. G.; Ruiza, J. G.; Herz, W. Phytochemistry 2005, 66, 837846.
(18) Pelletier, S. W.; Srivastava, S. K.; Joshi, B. S.; Olsen, J. D. Heterocycles 1985, 23, 331-338.
NP058073P

[^0]: ${ }^{\perp}$ Dedicated to Dr. Norman R. Farnsworth of the University of Illinois at Chicago for his pioneering work on bioactive natural products.

 * To whom correspondence should be addressed. Tel: 082-2-740-8925. Fax: 082-2-743-3323. E-mail: sskang@ snu.ac.kr.
 \dagger Seoul National University.
 § Andong National University.
 \ddagger Chungnam National University.

